Regioselective synthesis of bridged azabicyclic compounds using radical translocations/cyclisations of methyl 2-alkynyl-1-(o-iodo-benzoyl)pyrrolidine-2-carboxylates: a formal total synthesis of (\pm)-epibatidine

Masazumi Ikeda,* Yasuhiro Kugo, Yukari Kondo, Taro Yamazaki and Tatsunori Sato

Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607, Japan
$\mathrm{Bu}_{3} \mathrm{SnH}$-mediated radical translocations/cyclisations of methyl 2-alkynyl-1-(o-iodobenzoyl)pyrrolidine-2-carboxylates have been examined. The 2-[3-(trimethylsilyl)prop-2-ynyl]-8,2-[4-(trimethylsilyl)but-3-ynyl]- 14, and 2-[5-(trimethylsilyl)pent-4-ynyl]-pyrrolidine derivatives 18, upon treatment with tributyltin hydride in the presence of azoisobutyronitrile in boiling toluene gave, regioselectively, the 7 -azabicyclo[2.2.1]heptane 19, 8-azabicyclo[3.2.1]octane 23, and 9-azabicyclo[4.2.1]nonane 26, respectively. The method has been applied to a formal total synthesis of $(\pm$)-epibatidine.

Introduction

Earlier we showed that methyl 1-(o-bromobenzoyl)-2-(prop-2-enyl)pyrrolidine-2-carboxylate $\mathbf{1}$, upon treatment with tributyltin hydride $\left(\mathrm{Bu}_{3} \mathrm{SnH}\right)$ in the presence of azoisobutyronitrile (AIBN), gave a mixture of the 7 -azabicyclo[2.2.1]heptane 4 (42% as a $2: 1$ diastereoisomeric mixture) and 8 -azabicyclo[3.2.1] octane $5(30 \%) .{ }^{1}$ A mechanistic rationalisation for the formation of $\mathbf{4}$ and $\mathbf{5}$ would involve a 1,5 -hydrogen transfer ${ }^{2}$ of the initially formed aryl radical $\mathbf{2}$ to form the α-acylamino radical 3, followed by either a 5 -exo-trig or 6-endo-trig cyclisation of this to give $\mathbf{4}$ and $\mathbf{5}$, respectively. The main disadvantage of

1

2

5 (30\%)
$4(42 \%$ as a $2: 1$ mixture of two diastereoisomers)

Scheme 1 Reagents: i, $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}$, toluene, reflux
this reaction is the lack of regioselectivity. In an effort to circumvent this problem we have now examined the behaviour of the 2-alkynylpyrrolidine-2-carboxylates $\mathbf{8 , 1 4}$ and 18, and found that they undergo exo-selective cyclisation to give the 7-azabicyclo[2.2.1]heptane 19, ${ }^{3}$-azabicyclo[3.2.1]octane $\mathbf{2 3}^{4}$ and 9 -azabicyclo[4.2.1]nonane $\mathbf{2 6},{ }^{5}$ respectively. In this paper we also describe a formal total synthesis of (\pm)-epibatidine 33.

Results and discussion

The radical precursor, 2-[3-(trimethylsilyl)prop-2-ynyl]pyrrol-idine-2-carboxylate $\mathbf{8}$ was readily obtained by direct alkylation of methyl 1-(tert-butoxycarbonyl)pyrrolidine-2-carboxylate $\mathbf{6}^{6}$
with 3-iodo-1-(trimethylsilyl)prop-1-yne ${ }^{7}$ followed by deprotection and N-acylation of the resulting compound 7 with o-iodobenzoyl chloride. The 2-[4-(trimethylsilyl)but-3-ynyl]pyrrol-idine-2-carboxylate 14 was prepared from methyl 1-(tert-butoxycarbonyl)-2-(prop-2-enyl)pyrrolidine-2-carboxylate 9^{6} as shown in Scheme 2. Thus, hydroboration of 9 with 3-methyl-

$\mathrm{Ar}=o$-iodophenyl
Scheme 2 Reagents and conditions: i, (TMS) ${ }_{2} \mathrm{NLi}, \mathrm{THF},-78^{\circ} \mathrm{C}$ and then $\mathrm{TMSC} \equiv \mathrm{CCH}_{2} \mathrm{I}, 62 \%$; ii, TMSI; iii, o-Iodobenzoyl chloride, $\mathrm{Et}_{2} \mathrm{NPh}$, DMAP, 77% for $\mathbf{8}, \mathbf{1 4}$ and 18; iv, $\mathrm{Sia}_{2} \mathrm{BH} ; \mathrm{v}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH}$, 91%; vi, $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 95 \%$; vii, $\mathrm{PPh}_{3}, \mathrm{CHBr}_{3}$, tertBuOK , toluene, 76%; viii; BuLi , THF, $-78^{\circ} \mathrm{C}$, and then TMSCl, 86%; ix, TMSC $\equiv \mathrm{CH}, \mathrm{EtMgBr}, 93 \%$; x $, \mathrm{PPh}_{3}, \mathrm{CBr}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 88 \%$; xi, $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, toluene, reflux, 94\%
butan-2-ylborane and subsequent Swern oxidation of the resulting alcohol $\mathbf{1 0}$ gave the aldehyde 11, which was allowed to react with bromoform and triphenylphosphine in the presence of potassium tert-butoxide to give the dibromide 12. Treatment of $\mathbf{1 2}$ with butyllithium ${ }^{8}$ and quenching with trimethylsilyl chloride gave the 2-[4-(trimethylsilyl)but-3-ynyl]pyrrolidine 13. Replacement of the N-tert-butoxycarbonyl group of $\mathbf{1 3}$ by an o-iodobenzoyl group gave the radical precursor 14. The 2 -[5-(trimethylsilyl)pent-4-ynyl]pyrrolidine-2-carboxylate $\mathbf{1 8}$ was prepared from the aldehyde 11. Grignard reaction of 11 with trimethylsilylethynylmagnesium bromide gave the ethynic alcohol 15. Treatment of $\mathbf{1 5}$ with carbon tetrabromide and triphenylphosphine followed by reduction of the resulting bromide $\mathbf{1 6}$ with $\mathrm{Bu}_{3} \mathrm{SnH}$ in the presence of a small amount of AIBN gave the 2-[5-(trimethylsilyl)pent-4-ynyl]pyrrolidine 17, which was converted into 18.

A toluene solution of $\mathrm{Bu}_{3} \mathrm{SnH}$ (1.25 mol equiv.) and a small amount of AIBN (0.1 mol equiv.) was added slowly to a boiling solution of $\mathbf{8}$ in toluene over a period of 2 h , and the mixture was refluxed for 2 h . The crude material was chromatographed on silica gel to give the 7 -azabicyclo[2.2.1]heptane 19 (a 5 -exo cyclisation product) in a 78% combined yield as a diastereoisomeric mixture along with the reduction product $20(18 \%)$. The structure of compound 19 was confirmed by the following chemical transformation. Treatment of 19 with toluene- p sulfonic acid in acetonitrile gave the methylene derivative 21 (69%) which was then oxidised with OsO_{4} and NaIO_{4} to afford the ketone 22 (55%). The ketone 22 showed strong carbonyl absorptions at 1760 (a five-membered ketone) and $1750 \mathrm{~cm}^{-1}$ (an ester) in addition to an absorption due to an N-benzoyl group at $1660 \mathrm{~cm}^{-1}$ in the IR spectrum. The ${ }^{1} \mathrm{H}$ NMR spectrum revealed a doublet due to a bridgehead proton $(4-\mathrm{H})$ at $\delta 4.36$ (J 5.1) and the ${ }^{13} \mathrm{C}$ NMR spectrum was in good agreement with the assigned structure.

Cyclisation of compound $\mathbf{1 4}$ proceeded more smoothly to give exclusively the 8 -azabicyclo[3.2.1]octane 23 (a 6 -exo cyclisation product) in a 83% combined yield as a diastereoisomeric mixture: no reduction product was detected. Compound $\mathbf{2 3}$ was again converted into the ketone $\mathbf{2 5}$ via the methylene derivative 24. The ${ }^{1} \mathrm{H}$ NMR spectrum of 25 showed a doublet due to a bridgehead proton $(5-\mathrm{H})$ at $\delta 4.42$ ($J 7.0$).

Compound 18 upon treatment with $\mathrm{Bu}_{3} \mathrm{SnH}-\mathrm{AIBN}$, gave an inseparable mixture of the 9 -azabicyclo[4.2.1]nonane 26 (as a diastereoisomeric mixture) and the reduction product 27 in 86% total yield and in a ratio of 48:52 (the ratio was determined by HPLC). The yield of $\mathbf{2 6}$ was estimated to be approximately 40%. The mixture was treated with toluene- p-sulfonic acid followed by oxidation with OsO_{4} and NaIO_{4} to give the ketone 28 in 17% overall yield. The signal of the bridgehead proton ($6-\mathrm{H}$) of $\mathbf{2 8}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum appeared as a doublet at $\delta 4.48$ (J 9.2).

The exclusive formation of the exo cyclisation products 19, 23 and 26 may reflect the closeness of the radical centre formed at the 5 -position of the pyrrolidine ring and the internal position of the alkynic bond. Of the possibilities, 5 - and 6membered ring formation is favoured over that of a larger ring.

Our interest was then focused on the application of the present method to the synthesis of the 7 -azabicyclo[2.2.1]heptan-3one 32, a key intermediate in the total synthesis of (\pm)epibatidine 33. Epibatidine is an alkaloid isolated from the skin of an Ecuadoran frog Epipedobates tricolor ${ }^{9}$ and the first alkaloid containing a 7 -azabicyclo[2.2.1]heptane ring system. This structural feature together with its potent analgesic properties rendered this alkaloid an attractive synthetic target and a number of total syntheses of it have already been reported. ${ }^{10}$ Thus, compound 21 was reduced with DIBAL-H followed by decarbonylation of the resulting aldehyde 29 with Wilkinson's catalyst ${ }^{11}$ to give the 3-methylene-7-azabicyclo[2.2.1]heptane 30 in 49% overall yield. Oxidation of $\mathbf{3 0}$ with OsO_{4} and NaIO_{4} yielded the N-benzoyl ketone 31 in 65% yield. Compound 31

Scheme 3 Reagents and conditions: i, $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}$, toluene, reflux; ii, $\mathrm{TsOH}, \mathrm{CH}_{3} \mathrm{CN}$; iii, $\mathrm{OsO}_{4}, \mathrm{NaIO}_{4}$
was then converted into 32 (54%) by acid hydrolysis and reprotection with di-tert-butyl dicarbonate. Since compound $\mathbf{3 2}$ has previously been converted into (\pm)-epibatidine 33 by Fletcher and co-workers, ${ }^{10 e}$ the present preparation of $\mathbf{3 2}$ constitutes, in a formal sense, a total synthesis of (\pm)-epibatidine.

Scheme 4 Reagents and conditions: i, DIBAL-H, $\mathrm{Et}_{2} \mathrm{O},-50^{\circ} \mathrm{C}$; ii, $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$, xylene, 49% overall yield; iii, $\mathrm{OsO}_{4}, \mathrm{NaIO}_{4}, 65 \%$; iv, 5% HCl , dioxane, reflux; $\mathrm{Et}_{3} \mathrm{~N},(\mathrm{Boc})_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 54 \%$
In summary, we have shown that the 2-alkynyl-1-(o-iodo-benzoyl)pyrrolidine-2-carboxylates undergo smoothly a 1,5-hydrogen-transfer followed by an exo-selective cyclisation of
the resulting α-acylamino radicals to give the azabicyclic compounds.

Experimental

Mps were measured on a Yanaco MP-J3 micro melting point apparatus and are uncorrected. IR spectra were recorded on a JASCO-IR-A-100 spectrophotometer. ${ }^{1} \mathrm{H}$ NMR (60 and 300 $\mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR (75.4 MHz) spectra were measured on a JEOL-JNM-PMX 60 or a Varian XL-300 spectrometer for solutions in $\mathrm{CDCl}_{3} . \delta$ Values quoted are relative to tetramethylsilane, and J values are given in Hz . Exact mass determinations (FAB mass spectra) were obtained on a JEOL-SX 102A instrument. Column chromatography was performed on silica gel $60 \mathrm{PF}_{254}$ (Nacalai Tesque) under pressure.

Methyl 1-(tert-butoxycarbonyl)-2-[3-(trimethylsilyl)prop-2-ynyl]pyrrolidine-2-carboxylate 7

To a solution of hexamethyldisilazane ($1.58 \mathrm{~g}, 9.81 \mathrm{mmol}$) and hexamethylphosphoramide (HMPA) ($1.76 \mathrm{~g}, 9.81 \mathrm{mmol}$) in THF ($10 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere was added dropwise a $1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of butyllithium in hexane ($\left.9.13 \mathrm{~cm}^{3}, 9.81 \mathrm{mmol}\right)$. The mixture was stirred for 15 min after which it was treated with a solution of $\mathbf{6}^{6}(1.50 \mathrm{~g}, 6.54$ $\mathrm{mmol})$ in THF $\left(10 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ and then stirred for 15 min . After a solution of 3-iodo-1-(trimethylsilyl)prop-1-yne ${ }^{7}(4.78 \mathrm{~g}$, $13.1 \mathrm{mmol})$ in THF $\left(10 \mathrm{~cm}^{3}\right)$ had been added at $-78^{\circ} \mathrm{C}$ to the mixture, it was stirred at room temperature for 2 days. The reaction mixture was then acidified with 10% aq. $\mathrm{HCl}\left(20 \mathrm{~cm}^{3}\right)$ and concentrated under reduced pressure. The aqueous layer was extracted with diethyl ether and the extract was washed with saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane- $\operatorname{AcOEt}(7: 1)$] to give $7(1.38 \mathrm{~g}, 62 \%)$ as a colourless oil (Found: C, 60.6; H, 8.8; N, 4.05. $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}_{4}$ Si requires C, 60.1 ; H, 8.6; N, 4.1\%) [Found: $(\mathrm{M}+\mathrm{H})^{+}, 340.1933 . \mathrm{C}_{17} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{Si}$ requires $m / z 340.1944] ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 2170,1740$ and 1695; $\delta_{\mathrm{H}}(60 \mathrm{MHz}) 0.20\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 1.44\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\text {t }}\right), 1.7-2.5(4 \mathrm{H}$, $\mathrm{m}), 2.77(1 \mathrm{H}, \mathrm{d}, J 18, \mathrm{C} H \mathrm{HC} \equiv \mathrm{CTMS}), 3.0-3.8\left(3 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right.$ and one of $\mathrm{CH} H \mathrm{C} \equiv \mathrm{CTMS}$) and $3.70(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$.

Methyl 1-(o-iodobenzoyl)-2-[3-(trimethylsilyl)prop-2-ynyl]-pyrrolidine-2-carboxylate 8

Trimethylsilyl iodide ($1.91 \mathrm{~g}, 13.4 \mathrm{mmol}$) was added to a solution of $7(3.80 \mathrm{~g}, 11.9 \mathrm{mmol})$ in acetonitrile $\left(5 \mathrm{~cm}^{3}\right)$ at room temperature and after the mixture had been stirred for 10 min , methanol $\left(2.1 \mathrm{~cm}^{3}\right)$ and saturated aq. $\mathrm{NaHCO}_{3}\left(10 \mathrm{~cm}^{3}\right)$ were added to it ; the mixture was then extracted with dichloromethane. The extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated and the residue was dissolved in benzene $\left(30 \mathrm{~cm}^{3}\right)$. This solution was then treated with N, N-diethylaniline ($3.20 \mathrm{~g}, 22.4 \mathrm{mmol}$) and a solution of o-iodobenzoyl chloride $(4.46 \mathrm{~g}, 16.8 \mathrm{mmol})$ in benzene $\left(20 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$, after which the whole was stirred at room temperature overnight. The mixture was then diluted with water $\left(30 \mathrm{~cm}^{3}\right)$ and the organic layer was separated. The aqueous layer was extracted with diethyl ether. The combined organic layer and extracts were washed with 10% aq. HCl , saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane$\operatorname{AcOEt}(10: 1)$] to give $8(4.06 \mathrm{~g}, 77 \%)$, mp $73.5-74{ }^{\circ} \mathrm{C}$ (from hexane) (Found: C, 48.4; H, 5.1; N, 2.9. $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{INO}_{3} \mathrm{Si}$ requires $\mathrm{C}, 48.6 ; \mathrm{H}, 5.15 ; \mathrm{N}, 3.0 \%) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 2175,1740$ and 1640; $\delta_{\mathrm{H}}(60 \mathrm{MHz}) 0.18\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 1.8-2.5(4 \mathrm{H}, \mathrm{m}), 2.89(1$ $\mathrm{H}, \mathrm{d}, J 18, \mathrm{CH} H \mathrm{C} \equiv \mathrm{CTMS}), 3.2-3.6\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 3.69(1 \mathrm{H}$, d, $J 18, \mathrm{CHHC} \equiv \mathrm{CTMS}), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.85-7.4(3 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$ and $7.80(1 \mathrm{H}$, br d, $J 8, \mathrm{ArH})$.

Methyl 1-(tert-butoxycarbonyl)-2-(3-hydroxypropyl)pyrrolidine-2-carboxylate 10
A $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution of 2-methylbut-2-ene in THF $\left(9.28 \mathrm{~cm}^{3}\right.$,
18.56 mmol) was added to a solution of borane-THF complex $\left(1 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ solution in THF; $\left.9.28 \mathrm{~cm}^{3}, 9.28 \mathrm{mmol}\right)$ at $-15^{\circ} \mathrm{C}$ and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . To the resulting solution of 3-methylbutan-2-ylborane was added dropwise a solution of $9^{6}(1.00 \mathrm{~g}, 3.71 \mathrm{mmol})$ in THF $\left(10 \mathrm{~cm}^{3}\right)$. The mixture was stirred at room temperature for 1 h after which a 30% $\mathrm{H}_{2} \mathrm{O}_{2}$ solution ($7.5 \mathrm{~cm}^{3}$), water $\left(1.5 \mathrm{~cm}^{3}\right)$ and 20% aqueous $\mathrm{NaOH}\left(3 \mathrm{~cm}^{3}\right)$ were added to the mixture at $0{ }^{\circ} \mathrm{C}$. After the mixture had been stirred for 1 h it was extracted with diethyl ether. The extract was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (1:1)] to give $\mathbf{1 0}(974 \mathrm{mg}, 91 \%)$ as a colourless oil [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 288.1821. $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{NO}_{5}$ requires m / z 288.1811]; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3450,1730$ and $1680 ; \delta_{\mathrm{H}}(60 \mathrm{MHz})$ $1.41\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 1.3-2.5(9 \mathrm{H}, \mathrm{m}), 3.4-3.8(4 \mathrm{H}, \mathrm{m})$ and 3.68 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$).

Methyl 1-(tert-butoxycarbonyl)-2-(2-formylethyl)pyrrolidine-2carboxylate 11
A solution of dimethyl sulfoxide ($870 \mathrm{mg}, 11.1 \mathrm{mmol}$) in dry dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ was added to a solution of oxalyl chloride ($706 \mathrm{mg}, 5.56 \mathrm{mmol}$) in dry dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ over a period of 10 min after which the mixture was stirred for 10 min . After this, a solution of $\mathbf{1 0}(1.07 \mathrm{~g}, 18.6$ $\mathrm{mmol})$ in dry dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ was added to the mixture which was then stirred at the same temperature for 1 h . After addition of triethylamine $(1.88 \mathrm{~g}, 18.5 \mathrm{mmol})$ to the mixture, it was allowed to warm to room temperature. After 30 h, the mixture was diluted with water $\left(10 \mathrm{~cm}^{3}\right)$ and the organic layer was separated and washed with 10% aq. HCl and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (4:1)] to give 11 (925 mg , 95%) as a colourless oil [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 286.1667. $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO}_{5}$ requires $\left.\mathrm{m} / \mathrm{z} 286.1655\right] ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1725$ and $1690 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 1.45\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 1.7-2.2(5 \mathrm{H}, \mathrm{m}), 2.3-2.6(3$ $\mathrm{H}, \mathrm{m}), 3.2-3.9\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 3.70(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and $9.65-9.85$ (1 H , unresolved m, CHO).

Methyl N-(tert-butoxycarbonyl)-2-(4,4-dibromobut-3-enyl)-pyrrolidine-2-carboxylate 12

Bromoform ($2.83 \mathrm{~g}, 11.2 \mathrm{mmol}$) was added to a solution of triphenylphosphine $(2.94 \mathrm{~g}, 11.2 \mathrm{mmol})$ and potassium tertbutoxide $(1.26 \mathrm{~g}, 11.2 \mathrm{mmol})$ in toluene $\left(10 \mathrm{~cm}^{3}\right)$ at $-20^{\circ} \mathrm{C}$ and the mixture was stirred at the same temperature for 15 min . A solution of $11(800 \mathrm{mg}, 2.80 \mathrm{mmol})$ in toluene $\left(10 \mathrm{~cm}^{3}\right)$ was added to the mixture after which it was stirred for 1 h at the same temperature. The mixture was then diluted with pentane $\left(80 \mathrm{~cm}^{3}\right)$ and the resulting precipitate was filtered off. The filtrate was concentrated and the residue was chromatographed on silica gel [hexane-AcOEt (6:1)] to give $\mathbf{1 2}(942 \mathrm{mg}, 76 \%)$ as a colourless oil (Found: C, 40.8; H, 5.2; N, 3.0. $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{Br}_{2} \mathrm{NO}_{4}$ requires $\mathrm{C}, 40.8 ; \mathrm{H}, 5.25 ; \mathrm{N}, 3.2 \%) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1735$ and $1690 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 1.46\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 1.7-2.5(8 \mathrm{H}, \mathrm{m}), 3.1-3.8(2$ $\left.\mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 3.71(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and $6.25-6.5(1 \mathrm{H}, \mathrm{m}$, olefinic H).

Methyl N-(tert-butoxycarbonyl)-2-[4-(trimethylsilyl)but-3-ynyl]-pyrrolidine-2-carboxylate 13
TMEDA $\left(1.5 \mathrm{~cm}^{3}\right)$ and a $1.6 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution of butyllithium in hexane ($3.89 \mathrm{~cm}^{3}, 6.22 \mathrm{mmol}$) were added to a solution of $\mathbf{1 2}$ $(1.10 \mathrm{~g}, 2.49 \mathrm{mmol})$ in THF $\left(10 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere and the whole was stirred for 1 h . Trimethylsilyl chloride ($406 \mathrm{mg}, 3.73 \mathrm{mmol}$) was added to the reaction mixture at the same temperature after which it was stirred at room temperature overnight. The mixture was diluted with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with diethyl ether. The extract was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt $(5: 1)$] to give $13(766 \mathrm{mg}, 86 \%)$ as a colourless oil [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 354.2089. $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NO}_{4}$ Si requires $m / z 354.2100$]; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1}$

2180, 1740 and $1695 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 0.15\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 1.44$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 1.7-2.6(8 \mathrm{H}, \mathrm{m}), 3.2-3.8\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right)$ and 3.67 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$).

Methyl 1-(o-iodobenzoyl)-2-[4-(trimethylsilyl)but-3-ynyl]-pyrrolidine-2-carboxylate 14

Following the procedure described for the preparation of $\mathbf{8}, \mathbf{1 4}$ ($1.68 \mathrm{~g}, 77 \%$) was obtained from $13(1.60 \mathrm{~g}, 4.53 \mathrm{mmol})$ and o-iodobenzoyl chloride ($2.42 \mathrm{~g}, 9.06 \mathrm{mmol}$) as an oil [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 484.0794. $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{INO}_{3} \mathrm{Si}$ requires m / z 484.0805]; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 2180,1740$ and $1645 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 0.16(9 \mathrm{H}, \mathrm{s}$, SiMe_{3}), 1.7-2.9 ($8 \mathrm{H}, \mathrm{m}$), $3.36\left(2 \mathrm{H}, \mathrm{t}, J 6.0,5-\mathrm{H}_{2}\right), 3.78(3 \mathrm{H}, \mathrm{s})$, $6.9-7.5(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.78(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 8.0, \mathrm{ArH})$.

Methyl 1-(tert-butoxycarbonyl)-2-[3-hydroxy-5-(trimethylsilyl)-pent-4-ynyl]pyrrolidine-2-carboxylate 15
A solution of ethynyltrimethylsilane ($258 \mathrm{mg}, 2.63 \mathrm{mmol}$) in THF ($2 \mathrm{~cm}^{3}$) was added to a $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution of ethylmagnesium bromide in THF ($2.63 \mathrm{~cm}^{3}, 2.63 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . After being stirred for 2 h at room temperature, the mixture was treated with a solution of $\mathbf{1 1}(500 \mathrm{mg}$, $1.75 \mathrm{mmol})$ in THF $\left(10 \mathrm{~cm}^{3}\right)$, added at $0^{\circ} \mathrm{C}$. After the mixture had been stirred at $0^{\circ} \mathrm{C}$ for 1 h , it was diluted with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with diethyl ether. The extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt ($4: 1$)] to give $\mathbf{1 5}$ ($621 \mathrm{mg}, 93 \%$) as an oily diastereoisomeric mixture [Found: $(\mathrm{M}+\mathrm{H})^{+}, 384.2203$. $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{NO}_{5} \mathrm{Si}$ requires $\left.\mathrm{m} / \mathrm{z} 384.2206\right] ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3660$, $3450,2175,1740$ and $1700 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 0.16\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right)$, $1.42\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 1.55-2.5(9 \mathrm{H}, \mathrm{m}), 3.2-3.8(2 \mathrm{H}, \mathrm{m}), 3.71(3 \mathrm{H}$, $\mathrm{s}, \mathrm{OMe})$ and $4.2-4.5(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH})$.

Methyl 1-(tert-butoxycarbonyl)-2-[3-bromo-5-(trimethylsilyl)-

 pent-4-ynyl]pyrrolidine-2-carboxylate 16Carbon tetrabromide ($779 \mathrm{mg}, 2.35 \mathrm{mmol}$) and triphenylphosphine ($615 \mathrm{mg}, 2.35 \mathrm{mmol}$) were added to a solution of $\mathbf{1 5}$ $(600 \mathrm{mg}, 1.57 \mathrm{mmol})$ in dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ and the whole was stirred at room temperature for 1 h . The mixture was evaporated and the residue was chromatographed on silica gel [hexane-AcOEt (4:1)] to give $16(616 \mathrm{mg}, 88 \%)$ as an oily diastereoisomeric mixture [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 446.1374 . $\mathrm{C}_{19} \mathrm{H}_{33}{ }^{79} \mathrm{BrNO}_{4} \mathrm{Si}$ requires $m / z 446.1362$]; $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 2175$, 1740 and $1700 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.18\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right) 1.43,1.45$ (total 9 H , both s, Bu^{t}), 1.80-2.18, 2.32-2.42 (total 8 H , both m), 3.37-3.79 ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}$), 3.71, 3.72 (total 3 H , both s, OMe) and 4.46-4.59 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHBr})$.

Methyl1-(tert-butoxycarbonyl)-2-[5-(trimethylsilyl)pent-4-ynyl]-pyrrolidine-2-carboxylate 17

$\mathrm{Bu}_{3} \mathrm{SnH}(862 \mathrm{mg}, 2.96 \mathrm{mmol})$ and AIBN ($45 \mathrm{mg}, 0.27 \mathrm{mmol}$) were added to a solution of $\mathbf{1 6}(1.20 \mathrm{~g}, 2.69 \mathrm{mmol})$ in benzene $\left(20 \mathrm{~cm}^{3}\right)$ and the mixture was refluxed for 1 h . After evaporation of the mixture, the residue was chromatographed on silica gel [hexane-AcOEt (4:1)] to give $\mathbf{1 7}(924 \mathrm{mg}, 94 \%)$ as a colourless oil [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 368.2267. $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{NO}_{4} \mathrm{Si}$ requires m / z 368.2258]; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 2180,1745$ and $1700 ; \delta_{\mathrm{H}}(300 \mathrm{MHz})$ $0.15,0.18$ (total 9 H , both s, SiMe_{3}), 1.41, 1.43, 1.45 (total 9 H , s each, Bu^{t}), 1.30-2.29 ($8 \mathrm{H}, \mathrm{m}$), 2.26 ($2 \mathrm{H}, \mathrm{t}, J 7.1$), 3.35-3.77 ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}$) and 3.71, 3.72 (total 3 H , both s, OMe).

Methyl 1-(o-iodobenzoyl)-2-[5-(trimethylsilyl)pent-4-ynyl]-

 pyrrolidine-2-carboxylate 18Following the procedure described for the preparation of $\mathbf{8}, \mathbf{1 8}$ ($681 \mathrm{mg}, 77 \%$) was obtained from $17(630 \mathrm{mg}, 1.72 \mathrm{mmol}$) and o-iodobenzoyl chloride ($687 \mathrm{mg}, 2.58 \mathrm{mmol}$) as a colourless oil [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 498.0974. $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{INO}_{3} \mathrm{Si}$ requires m / z 498.0962]; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 2180,1745$ and $1650 ; \delta_{\mathrm{H}}(300 \mathrm{MHz})$ $0.15\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 1.65-2.04(4 \mathrm{H}, \mathrm{m}), 2.13-2.40(1 \mathrm{H}, \mathrm{m})$, $2.16(2 \mathrm{H}, \mathrm{t}, J 6.9), 2.30(2 \mathrm{H}, \mathrm{q}, J 6.9), 2.47-2.58(1 \mathrm{H}, \mathrm{m}), 3.30-$
$3.40\left(2 \mathrm{H}, \mathrm{br}, 5-\mathrm{H}_{2}\right), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.07(1 \mathrm{H}, \mathrm{td}, J 7.8,1.8$, ArH), 7.21 (1 H , dd, $J 7.8,1.8, \mathrm{ArH}$), 7.39 ($1 \mathrm{H}, \operatorname{td}, J 7.8,0.9$, $\mathrm{ArH})$ and $7.82(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{ArH})$.

Radical cyclisation of compound 8

General procedure. To a stirred and boiling solution of $\mathbf{8}$ (405 $\mathrm{mg}, 0.86 \mathrm{mmol})$ in toluene ($40 \mathrm{~cm}^{3}$) was added a solution of $\mathrm{Bu}_{3} \mathrm{SnH}(326 \mathrm{mg}, 1.12 \mathrm{mmol})$ and $\operatorname{AIBN}(14 \mathrm{mg}, 0.09 \mathrm{mmol})$ in toluene ($40 \mathrm{~cm}^{3}$) via a syringe during 2 h , and the mixture was refluxed for 2 h . The same procedure was repeated. After evaporation of the mixture, diethyl ether ($20 \mathrm{~cm}^{3}$) and 8% aqueous $\mathrm{KF}\left(20 \mathrm{~cm}^{3}\right)$ were added to the residue, and the whole was vigorously stirred at room temperature for 1 h . The organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (10:1)]. The first fraction gave a mixture of E and Z isomers (ca. 1:1 ratio) of methyl 7-benzoyl-3-(trimethylsilylmethylene)-7-azabicyclo[2.2.1]heptane-1-carboxylate $19(230 \mathrm{mg}, 78 \%)$ as a colourless oil [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 344.1691. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{Si}$ requires $m / z 344.1682$]; $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1740$ and $1650 ; \delta_{\mathrm{H}}(300$ MHz) (for a mixture of two isomers) $-0.15,0.07$ (total 9 H , both s, SiMe_{3}), $1.56-1.68(1 \mathrm{H}, \mathrm{m}), 1.80-1.91(1 \mathrm{H}, \mathrm{m}), 2.03-$ $2.22(1 \mathrm{H}, \mathrm{m}), 2.37(1 \mathrm{H}, \mathrm{dt}, J 11.9,3.6), 2.46(1 \mathrm{H}, \mathrm{dt}, J 16.2$, 2.7), 2.98-3.11 ($1 \mathrm{H}, \mathrm{m}$), 3.827, 3.834 (total 3 H , both s, OMe), $4.40(1 / 2 \mathrm{H}, \mathrm{d}, J 4.6,4-\mathrm{H}), 4.63$ ($1 / 2 \mathrm{H}, \mathrm{d}, J 4.9,4-\mathrm{H}$), 5.25 ($1 / 2$ $\mathrm{H}, \mathrm{t}, J 2.25$, olefinic H), 5.28 ($1 / 2 \mathrm{H}$, br s, olefinic H), 7.38-7.52 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.65-7.68 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

The second fraction gave methyl 1-benzoyl-2-[3-(trimethyl-silyl)prop-2-ynyl] pyrrolidine-2-carboxylate 20 ($53 \mathrm{mg}, 18 \%$), mp $60-61.5^{\circ} \mathrm{C}$ (from pentane) (Found: C, 66.7; H, 7.5; N, 4.0. $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{3}$ Si requires C, $66.4 ; \mathrm{H}, 7.3 ; \mathrm{N}, 4.1 \%$); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1}$ 2175,1740 and $1635 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 0.20\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 1.8-2.5$ ($4 \mathrm{H}, \mathrm{m}$), 2.80 ($1 \mathrm{H}, \mathrm{d}, J 17, \mathrm{CHHC}=\mathrm{CTMS}$), 3.4-3.8 ($2 \mathrm{H}, \mathrm{m}$, $\left.5-\mathrm{H}_{2}\right)$, $3.66(1 \mathrm{H}, \mathrm{d}, J 17, \mathrm{CH} H \mathrm{C}=\mathrm{CTMS}), 3.74(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and 7.2-7.6 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Methyl 7-benzoyl-3-methylene-7-azabicyclo[2.2.1]heptane-1carboxylate 21

A mixture of $\mathbf{1 9}(200 \mathrm{mg}, 0.58 \mathrm{mmol})$ and toluene- p-sulfonic acid monohydrate ($55 \mathrm{mg}, 0.29 \mathrm{mmol}$) in wet acetonitrile (10 cm^{3}) was heated under reflux for 3.5 h . After evaporation of the mixture, the residue was dissolved in diethyl ether $\left(10 \mathrm{~cm}^{3}\right)$. The solution was washed with 5% aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane- $\operatorname{AcOEt}(7: 1)$] to give $21(109 \mathrm{mg}, 69 \%)$ as a colourless oil [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 272.1275. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{3}$ requires m / z 272.1287]; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1740$ and $1650 ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz}) 1.65(1 \mathrm{H}$, ddd, $J 11.5,9.3,3.9), 1.87(1 \mathrm{H}$, ddd, $J 11.8$, 9.3, 4.8), $2.13(1 \mathrm{H}, \mathrm{tt}, J 11.9,4.8), 2.40(1 \mathrm{H}, \mathrm{tt}, J 11.9,3.6), 2.47$ $(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 15.9,2-H \mathrm{H}), 3.05(1 \mathrm{H}, \mathrm{dq}, J 15.9,2.7,2-\mathrm{H} H)$, 3.82 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.51 ($1 \mathrm{H}, \mathrm{d}, J 4.8,4-\mathrm{H})$, 4.78 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{C}=\mathrm{C} H \mathrm{H}), 4.82(1 \mathrm{H}, \mathrm{t}, J 2.7, \mathrm{C}=\mathrm{CH} H), 7.37-7.53(3 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$ and 7.65-7.70 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Methyl 7-benzoyl-3-oxo-7-azabicyclo[2.2.1]heptane-1carboxylate 22

4% Aq. osmium tetroxide $\left(0.05 \mathrm{~cm}^{3}, 2.54 \mathrm{mg}\right.$ as $\mathrm{OsO}_{4}, 0.01$ $\mathrm{mmol})$ was added to a solution of $21(100 \mathrm{mg}, 0.37 \mathrm{mmol})$ in THF- $\mathrm{H}_{2} \mathrm{O}(4: 1)\left(5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ and the whole was stirred for 5 min . To this mixture was added $\mathrm{NaIO}_{4}(237 \mathrm{mg}, 1.11 \mathrm{mmol})$ over a period of 30 min and the mixture was stirred at room temperature overnight after which it was diluted with water and extracted with diethyl ether. The extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (3:1)] to give 22 ($55 \mathrm{mg}, 55 \%$), mp $109-110^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, 65.5; H, 5.5; N, 4.9. $\mathrm{C}_{15^{-}}$ $\mathrm{H}_{15} \mathrm{NO}_{4}$ requires C, $\left.65.9 ; \mathrm{H}, 5.5 ; \mathrm{N}, 5.1 \%\right) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1}$ 1760,1750 and $1660 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.77(1 \mathrm{H}$, ddd, $J 12.9,9.3$, 4.3), 1.97 ($1 \mathrm{H}, \mathrm{ddd}, J 12.2,9.3,4.3$), $2.24(1 \mathrm{H}, \mathrm{tt}, J 12.2,5.1)$, $2.43(1 \mathrm{H}, \mathrm{d}, J 17.6,2-H \mathrm{H}), 2.53(1 \mathrm{H}, \mathrm{tt}, J 12.2,3.9), 3.08(1 \mathrm{H}$,
dd, $J 17.6,2.6,2-\mathrm{H} H), 3.87(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.36(1 \mathrm{H}, \mathrm{d}, J 5.1$, 4-H), 7.39-7.57 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.63-7.70 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); δ_{C} $25.0\left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{CH}_{2}\right), 47.0\left(\mathrm{CH}_{2}\right), 52.8(\mathrm{OMe}), 67.6(1-\mathrm{C})$, 69.1 (4-C), 128.65, 128.7, 132.35, 133.05, 169.2 (C=O), 172.1 $(\mathrm{C}=\mathrm{O})$ and $206.3(\mathrm{C}=\mathrm{O})$.

Radical cyclisation of compound 14

Following the general procedure, $\mathbf{1 4}(500 \mathrm{mg}, 1.04 \mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(393 \mathrm{mg}, 1.35 \mathrm{mmol})$ and AIBN $(17 \mathrm{mg}$, 0.10 mmol) in toluene and the crude material was chromatographed on silica gel [hexane-AcOEt (7:1)] to give a mixture of E and Z isomers ($1: 1$ ratio) of methyl 8-benzoyl-4-(trimethyl-silylmethylene)-8-azabicyclo[3.2.1]octane-1-carboxylate 23 (318 $\mathrm{mg}, 86 \%)$ as a colourless oil [Found: $(\mathrm{M}+\mathrm{H})^{+}, 358.1829$. $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{3}$ Si requires $\left.m / z 358.1838\right] ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1735$ and $1630 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, for a mixture of two isomers) $-0.37,0.14$ (total 9 H , both s, SiMe_{3}), 1.76-1.87 ($1 \mathrm{H}, \mathrm{m}$), 1.99-2.17 (2 H , m), 2.24-2.79 ($5 \mathrm{H}, \mathrm{m}$), 3.74, 3.77 (total 3 H , both s, OMe), 4.33-4.37 ($1 / 2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 4.42 ($1 / 2 \mathrm{H}, \mathrm{d}, J$ 1.8, olefinic H), 4.89 ($1 / 2 \mathrm{H}, \mathrm{d}, J 6.6,5-\mathrm{H}), 4.97$ (1/2 H, d, $J 2.1$, olefinic H), 7.33-7.48 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.50-7.56 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

Methyl 8-benzoyl-4-methylene-8-azabicyclo[3.2.1]octane-1carboxylate 24

Following the procedure described for the preparation of 21, 24 ($103 \mathrm{mg}, 86 \%$) was obtained from $23(150 \mathrm{mg}, 0.42 \mathrm{mmol}$) as a colourless oil [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 286.1447. $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{3}$ requires m / z 286.1443]; $v_{\max }\left(\mathrm{CCl}_{4} / \mathrm{cm}^{-1} 1740\right.$ and 1640; $\delta_{\mathrm{H}}(300 \mathrm{MHz})$ $1.72-1.90(1 \mathrm{H}, \mathrm{m}), 2.00-2.18(2 \mathrm{H}, \mathrm{m}), 2.23-2.54(5 \mathrm{H}, \mathrm{m}), 3.76$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.08(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}=\mathrm{CHH}), 4.46(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{C}=\mathrm{CH} H), 4.50(1 \mathrm{H}, \mathrm{d}, J 6.1,5-\mathrm{H}), 7.35-7.48(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.48-7.55 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

Methyl 8-benzoyl-4-oxo-8-azabicyclo[3.2.1]octane-1carboxylate 25

Following the procedure described for the preparation of 22, $25(43 \mathrm{mg}, 43 \%)$ was obtained from $24(100 \mathrm{mg}, 0.35 \mathrm{mmol})$, $\mathrm{mp} 146-147^{\circ} \mathrm{C}$ (from AcOEt) [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 288.1227. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{4}$ requires m / z 288.1236]; $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1745,1730$ and 1655 ; $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.92-2.00(1 \mathrm{H}, \mathrm{m}), 2.15-2.33(2 \mathrm{H}, \mathrm{m})$, 2.40-2.65 ($4 \mathrm{H}, \mathrm{m}$), 2.86-2.98 ($1 \mathrm{H}, \mathrm{m}$), $3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.42$ $(1 \mathrm{H}, \mathrm{d}, J 7.0,5-\mathrm{H})$ and $7.36-7.51(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 27.25$ $\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 32.7\left(\mathrm{CH}_{2}\right), 33.4\left(\mathrm{CH}_{2}\right), 52.7(\mathrm{OMe}), 64.2$ (1-C), 68.5 (5-C), 127.5, 128.7, 131.2, 134.3, 170.1 (C=O), 171.15 $(\mathrm{C}=\mathrm{O})$ and $205 \cdot 2(\mathrm{C}=\mathrm{O})$.

Radical cyclisation of compound 18

Following the general procedure, $\mathbf{1 8}(700 \mathrm{mg}, 1.37 \mathrm{mmol})$ was treated twice with $\mathrm{Bu}_{3} \mathrm{SnH}(518 \mathrm{mg}, 1.78 \mathrm{mmol})$ and AIBN (23 $\mathrm{mg}, 0.14 \mathrm{mmol}$) in toluene and the crude material was chromatographed on silica gel [hexane-AcOEt (6:1)] to give an inseparable mixture of methyl 9-benzoyl-5-(trimethylsilyl-methylene)-9-azabicyclo[4.2.1]nonane-1-carboxylate 26 ($E: Z=$ 9:7 by HPLC) and methyl 1-benzoyl-2-[5-(trimethylsilyl)pent-4-ynyl]pyrrolidine-2-carboxylate 27 ($455 \mathrm{mg}, 86 \%$) in a ratio of $48: 52$ (by HPLC) as a colourless oil. The ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture could not be analysed due to its complexity.

Methyl 9-benzoyl-5-oxo-9-azabicyclo[4.2.1]nonane-1carboxylate 28

Following the procedure described for the preparation of 21, a mixture of 26 and $27(220 \mathrm{mg}, 0.57 \mathrm{mmol})$ was treated with toluene- p-sulfonic acid ($33 \mathrm{mg}, 0.17 \mathrm{mmol}$) in acetonitrile to give again an inseparable $1: 1$ mixture of methyl 9-benzoyl-5-methylene-9-azabicyclo[4.2.1]nonane-1-carboxylate and methyl 1-benzoyl-2-(pent-4-ynyl)pyrrolidine-2-carboxylate (total 118 $\mathrm{mg}, 66 \%$ combined yield), which was used for the next step without further purification.

Following the procedure described for the preparation of 22, the mixture obtained above ($200 \mathrm{mg}, 0.64 \mathrm{mmol}$) was oxidised
with OsO_{4} and NaIO_{4}. The crude material was chromatographed on silica gel [hexane-AcOEt (1:1)] to give 28 (53 mg , 26%), mp 175-176 ${ }^{\circ} \mathrm{C}$ (from AcOEt) (Found: C, 67.5; H, 6.4; N, 4.6. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{4}$ requires $\left.\mathrm{C}, 67.8 ; \mathrm{H}, 6.35 ; \mathrm{N}, 4.65 \%\right)$; $v_{\max }\left(\mathrm{CCl}_{4}\right) /$ $\mathrm{cm}^{-1} 1745,1715$ and 1640; $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.63-1.80(1 \mathrm{H}, \mathrm{m})$, 1.96-2.16 ($3 \mathrm{H}, \mathrm{m}$), 2.20-2.36 ($2 \mathrm{H}, \mathrm{m}$), 2.37-2.58 ($2 \mathrm{H}, \mathrm{m}$), 2.69-2.83 ($2 \mathrm{H}, \mathrm{m}$), 3.79 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.48 ($1 \mathrm{H}, \mathrm{d}, J 9.2$, $6-\mathrm{H})$ and $7.33-7.47(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 19.3\left(\mathrm{CH}_{2}\right), 30.4\left(\mathrm{CH}_{2}\right)$, $31.4\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{CH}_{2}\right), 41.7\left(\mathrm{CH}_{2}\right), 52.6(\mathrm{OMe}), 68.2(1-\mathrm{C}$ or $6-\mathrm{C}), 68.3$ (6-C or 1-C), 126.5, 128.8, 130.4, 135.5, 168.8 (C=O), $172.7(\mathrm{C}=\mathrm{O})$ and $214.2(\mathrm{C}=\mathrm{O})$.

7-Benzoyl-2-methylene-7-azabicyclo[2.2.1]heptane 29

A $0.95 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of DIBAL-H in hexane $\left(2.24 \mathrm{~cm}^{3}\right.$, $2.13 \mathrm{mmol})$ was added to a solution of $21(480 \mathrm{mg}, 1.77 \mathrm{mmol})$ in diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$ at $-50^{\circ} \mathrm{C}$ under a nitrogen atmosphere and the mixture was stirred for 30 min . Methanol $\left(1 \mathrm{~cm}^{3}\right)$ and then $10 \% \mathrm{NaOH}$ solution $\left(15 \mathrm{~cm}^{3}\right)$ were added to this mixture and the organic layer was separated. The aqueous layer was extracted with diethyl ether and the combined organic layer and extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give 7-benzoyl-3-methylene-7-azabicyclo[2.2.1]-heptane-1-carbaldehyde 29 (382 mg), which was used for the next step without further purification.
A solution of the crude aldehyde ($382 \mathrm{mg}, 1.58 \mathrm{mmol}$) and Wilkinson's complex $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}(1.61 \mathrm{~g}, 1.74 \mathrm{mmol})$ in xylene $\left(5 \mathrm{~cm}^{3}\right)$ was refluxed for 3 h under a nitrogen atmosphere. The mixture was concentrated and the residue was chromatographed on silica gel [hexane-AcOEt (5:1)] to give 30 ($184 \mathrm{mg}, 49 \%$ overall yield from 21), $\mathrm{mp} 46-47^{\circ} \mathrm{C}$ (from pentane) [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 214.1239. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}$ requires m / z 214.1232]; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1640 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.50-1.66(2 \mathrm{H}$, m), 1.80-2.20 ($2 \mathrm{H}, \mathrm{br}$), $2.17(1 \mathrm{H}, \mathrm{d}, J 15.7), 2.48-2.70(1 \mathrm{H}$, br), 4.20-5.15 ($1 \mathrm{H}, \mathrm{br}$), 4.70-5.15 ($3 \mathrm{H}, \mathrm{br}$), 7.36-7.50 ($3 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$ and $7.51-7.58(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

7-Benzoyl-7-azabicyclo[2.2.1]heptan-2-one 31

Following the procedure described for the preparation of 22,31 (118 mg, 65\%) was obtained from $30(180 \mathrm{mg}, 0.85 \mathrm{mmol})$ as an oil [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 216.1033. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{2}$ requires m / z 216.1025]; $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1760$ and $1645 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.63-$ $1.79(2 \mathrm{H}, \mathrm{m}), 2.00-2.21(3 \mathrm{H}, \mathrm{m}), 2.64(1 \mathrm{H}, \mathrm{dd}, J 17.5,5.3)$, $4.30-4.62(1 \mathrm{H}, \mathrm{br}, 1-$ or $4-\mathrm{H}), 4.69-5.05(1 \mathrm{H}, \mathrm{br}, 4-$ or $1-\mathrm{H})$ and 7.38-7.60 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

tert-Butyl 2-oxo-7-azabicyclo[2.2.1]heptane-7-carboxylate 32

A solution of $31(30 \mathrm{mg}, 0.14 \mathrm{mmol})$ in 5% aq. $\mathrm{HCl}\left(1.5 \mathrm{~cm}^{3}\right)$ and dioxane ($2 \mathrm{~cm}^{3}$) was heated under reflux for 15 h . The mixture was concentrated in vacuo and a trace of water was removed by azeotropic distillation with ethanol. The residue was dissolved in dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$, and triethylamine ($70 \mathrm{mg}, 0.69 \mathrm{mmol}$) and di-tert-butyl dicarbonate ($76 \mathrm{mg}, 0.35$ mmol) were added to the mixture. The whole was stirred at room temperature for 16 h , washed with $5 \% \mathrm{aq} . \mathrm{HCl}$ and saturated aq. NaHCO_{3}, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (5:1)] to give 32 ($16 \mathrm{mg}, 54 \%$) as a colourless oil which solidified with time, $\mathrm{mp} 50-52{ }^{\circ} \mathrm{C}$ [from light petroleum (bp $30-70^{\circ} \mathrm{C}$)] (lit. ${ }^{10 e}$ $\left.60-62^{\circ} \mathrm{C}\right) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1765$ and $1705 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.46(9$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 1.53-1.69(2 \mathrm{H}, \mathrm{m}), 1.91-2.09(2 \mathrm{H}, \mathrm{m}), 2.00(1 \mathrm{H}, \mathrm{d}, J$ 17.6, 3-HH), 2.42-2.52 (1 H , dd like m, 3-HH), 4.25 ($1 \mathrm{H}, \mathrm{d}, J$ 4.9, 1- or $4-\mathrm{H})$ and $4.56(1 \mathrm{H}, \mathrm{t}, J 4.8,4$ - or $1-\mathrm{H}) ; \delta_{\mathrm{C}} 24.4\left(\mathrm{CH}_{2}\right)$, $27.5\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{Bu}^{t}\right), 45.2(3-\mathrm{C}), 56.0(4-\mathrm{C}), 63.9(1-\mathrm{C}), 80.8$ $\left(\mathrm{CMe}_{3}\right), 155.0(\mathrm{C}=\mathrm{O})$ and $209.6(\mathrm{C}=\mathrm{O})$.

References

1 T. Sato, T. Mori, T. Sugiyama, H. Ishibashi and M. Ikeda, Heterocycles, 1994, 37, 245; T. Sato, Y. Kugo, E. Nakaumi, H. Ishibashi and M. Ikeda, J. Chem. Soc., Perkin Trans. 1, 1995,

1801; M. Ikeda, Y. Kugo and T. Sato, J. Chem. Soc., Perkin Trans. 1, 1996, 1819.
2 For the generation of the α-acylamino radicals by 1,5 -hydrogentransfer reactions of o-halogenobenzamides, see: (a) V. Snieckus, J.-C. Cuevas, C. P. Sloan, H. Liu and D. P. Curran, J. Am. Chem. Soc., 1990, 112, 896; (b) D. P. Curran and W. Shen, J. Am. Chem. Soc., 1993, 115, 6051; (c) D. P. Curran and H. Liu, J. Chem. Soc., Perkin Trans. 1, 1994, 1377.
3 For a review of the synthesis of 7-azabicyclo[2.2.1]heptane ring system, see: Z. Chen and M. L. Trudell, Chem. Rev., 1996, 96, 1179.
4 For reviews of the synthesis of the 8-azabicyclo[3.2.1]octane ring system, see: M. Lounasmaa and T. Tamminen in The AlkaloidsChemistry and Pharmacology, ed. G. A. Cordell, Academic Press, San Diego, 1993, vol. 44, p. 1; A. Hosomi and Y. Tominaga in Comprehensive Organic Synthesis, ed. B. M. Trost and I. Fleming, 1991, vol. 5, p. 593; A. R. Katritzky and N. Dennis, Chem. Rev., 1989, 89, 827.
5 For a recent synthesis of the 9-azabicyclo[4.2.1]nonane ring system, see: P. J. Parsons, N. P. Camp, J. M. Underwood and D. M. Harvey, Tetrahedron, 1996, 52, 11637.
6 P. N. Confalone, E. M. Huie, S. S. Ko and G. M. Cole, J. Org. Chem., 1988, 53, 482.
7 J. H. Rigby and S. V. Cuisiat, J. Org. Chem., 1993, 58, 6283.
8 E. J. Corey and P. L. Fuchs, Tetrahedron Lett., 1972, 36, 3764; E. J. Trybulski, R. H. Kramss, R. M. Mangano and A. Rusinko, III, J. Med. Chem., 1990, 33, 3190; D. S. Garvey, J. T. Wasicak, J. Y.-L. Chung, Y.-K. Shue, G. M. Carrera, P. D. May, M. M. McKinney, D. Anderson, E. Cadman, L. Vella-Rountree, A. M. Nadzan and M. Williams, J. Med. Chem., 1992, 35, 1550; M. C. McIntosh and S. M. Weinreb, J. Org. Chem., 1993, 58, 4823.

9 T. F. Spande, H. M. Garraffo, M. W. Edwards, H. J. C. Yeh, L. Pannell and J. W. Daly, J. Am. Chem. Soc., 1992, 114, 3475.

10 For the syntheses of epibatidine, see (a) C. A. Broka, Tetrahedron

Lett., 1993, 34, 3251; (b) D. F. Huang and T. Y. Shen, Tetrahedron Lett., 1993, 34, 4477; (c) S. C. Clayton and A. C. Regan, Tetrahedron Lett., 1993, 34, 7493; (d) E. J. Corey, T.-P. Loh, S. AchyuthaRao, D. C. Daley and S. Sarshar, J. Org. Chem., 1993, 58, 5600; (e) S. R. Fletcher, R. Baker, M. S. Chambers, R. H. Herbert, S. C. Hobbs, S. R. Thomas, H. M. Verrier, A. P. Watt and R. G. Ball, J. Org. Chem., 1994, 59, 1771; (f) K. Sestanj, E. Melenski and I. Jirkovski, Tetrahedron Lett., 1994, 35, 5417; (g) K. Okabe and M. Natsume, Chem. Pharm. Bull., 1994, 42, 1432; (h) S. Y. Ko, J. Lerpiniere, I. D. Linney and R. Wrigglesworth, J. Chem. Soc., Chem. Commun., 1994, 1775; (i) K. Senokuchi, H. Nakai, M. Kawamura, N. Katsube, S. Nonaka, H. Sawaragi and N. Hamanaka, Synlett., 1994, 343; (j) G. Pandey, T. D. Bagul and G. Lakshmaiah, Tetrahedron Lett., 1994, 35, 7439; (k) E. Albertini, A. Barcó, S. Benetti, C. De Risi, G. P. Pollini, R. Romagnoli and V. Zanirato, Tetrahedron Lett., 1994, 35, 9297; (l) P. L. Kotian and F. I. Carrol, Synth. Commun., 1995, 25, 63; (m) A. Hernández, M. Marcos and H. Rapoport, J. Org. Chem., 1995, 60, 2683; (n) D. Bai, R. Xu, G. Chu and X. Zhu, J. Org. Chem., 1996, 61, 4600; (o) B. M. Trost and G. R. Cook, Tetrahedron Lett., 1996, 37, 7485; (p) J. A. Campbell and H. Rapoport, J. Org. Chem., 1996, 61, 6313; (q) C. Szántay, Z. Kardos-Balogh, I. Moldvai, C. Szeántay Jr., E. Temesvari-Major and G. Blasko, Tetrahedron, 1996, 52, 11 053; (r) E. Albertini, A. Barcó, S. Benetti, C. De Risi, G. P. Pollini and V. Zanirato, Tetrahedron Lett., 1997, 38, 681; (s) C. R. Davis, R. A. Johnson, J. I. Cialdella, W. F. Liggett, S. A. Mizsak and V. P. Marshall, J. Org. Chem., 1997, 62, 2244; (t) G. M. P. Giblin, C. D. Jones and N. S. Simpkins, Synlett., 1997, 589. 11 J. Tsuji and K. Ohno, Tetrahedron Lett., 1965, 3969.

Paper 7/05226J
Received 21st July 1997
Accepted 5th August 1997

